
thirdweb A-3
Security Audit

Aug 19th, 2022
Version 1.0.0

Presented by 0xMacro

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Disclaimer

Introduction

This document includes the results of the security audit for thirdweb's smart contract

code as found in the section titled ‘Source Code’. The security audit was performed by the

Macro security team from June 18, 2022 to June 29, 2022.

The purpose of this audit is to review the source code of certain thirdweb Solidity

contracts, and provide feedback on the design, architecture, and quality of the source

code with an emphasis on validating the correctness and security of the software in its

entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that

should be made to the source code, this audit should not solely be relied upon for

security, as no single audit is guaranteed to catch all possible bugs.

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

High 1 - - 1

Medium 3 1 1 1

Low 7 2 4 1

Code Quality 5 2 - 3

Informational 1 - - -

thirdweb was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions on Slack with the thirdweb team.

An audit handoff document hosted on Notion.

Source Code

The following source code was reviewed during the audit:

Repository: contracts

Commit Hash: 85d1be5546d93ffe1fd1375ceb90af67a4e3210d

Specifically, we audited the following contracts within this repository:

Contract SHA256

contracts/pack/Pack.sol 3dc0c8320b4c58a841c5c09eea8fdf4a4de
1f44704f0d193d910e68d3a375568

contracts/extension/ContractMetadata.sol a50e76e5f1d5faca0d76ecb578d346c999e
ec0fbe7806e6780bd68f1204fbd9f

contracts/extension/Royalty.sol 56d323ffb5d56d80c98a115dfcef8738e5f
f1120c67a940a9b67459d13fac969

contracts/extension/Ownable.sol fe85fc62427b51d9860b1f79796eccd1469
a43bd6679fcc7c7e1a31f57dc176c

contracts/extension/Permissions.sol 053f4dc4bdd53ee4f59f049516c7513fde5
3cc5a461af4068ff9015036220efa

contracts/extension/PermissionsEnumerable.
sol

903504914fd1309f65017775edf99f65e6c
334dbeb2fee37cc07d8b39dd6439f

contracts/extension/TokenBundle.sol b181b2d3ef577b59a798800fa39e6a8df75
e1d759eee1ecd5fb36231f0ce0af3

contracts/extension/TokenStore.sol d04bf4fd423d4765e336a9322bf32afc545
8e674824b5d50ae2f90ec450f6bca

contracts/extension/interface/IContractMeta
data.sol

f0b7ac93fba3fbb8a71bd76da822cceec0f
a86b20418835a228c67d06176eaec

contracts/extension/interface/IOwnable.sol f4e6814d6fa45c709cbd03de2a2fd46fb86
d3156cb934f6feb9acaa692deca72

contracts/extension/interface/IPermissions.s
ol

333d596baf00c08da55bc1671da3f5df65c
4a1d9e8d5639e910d1c23ffb7f980

contracts/extension/interface/IPermissionsEn
umerable.sol

5993fac74a2908a778d21786cf0542f32c8
c57d05a03321175b630948bf4913e

contracts/extension/interface/IRoyalty.sol 8f39cbdfd7fff348f5f002c2ee87f607811
e02312a673781e1cd3281694a9568

contracts/extension/interface/ITokenBundle.s
ol

fe05e8c4123da579aab2a92efe43b925e81
443c870ac05b0f3b99bcaee0321bb

contracts/interfaces/IPack.sol a3a8f38e49e60615ebf87ae9be98e42553a
1b240751c3b49b416bdec75ee9776

contracts/interfaces/IWETH.sol 839869bd411a4e68c9a59d2a0c394a08764
1eeeadeda4956a255dc3179110cc3

contracts/lib/CurrencyTransferLib.sol ab7e40d1b333d675e23d9d4a4c70836c508
b2e8b890cf1c6f3dc554424d1215d

contracts/lib/TWStrings.sol d1fa327e26529fe1048a230a9fdaa183da2
1f9418729b665e0d57f68f136de0b

contracts/openzeppelin-
presets/metatx/ERC2771ContextUpgradeable
.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/openzeppelin-
presets/token/ERC20/utils/SafeERC20.sol

569cd0b266ff404aeac1a4266a1535121e4
7907ef1dcea2d55f4c036a11f758e

Note: This document contains an audit solely of the Solidity contracts listed above.

Specifically, the audit pertains only to the contracts themselves, and does not pertain to

any other programs or scripts, including deployment scripts.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

H-1 Reward selection exploits

M-1 Lost ERC-20 pack tokens result in permanently locked assets

M-3 Users can claim small amounts of tokens for free

M-4 Publishing is potentially too trusted

L-1 Pack opening vulnerable to DoS

L-2 Fee-on-transfer ERC-20 incompatibility

L-3 supportsInterface() may prevent ERC721 tokens from transferring to Pack.sol

L-4 No recovery for accidental transfers

L-5 Trusted forwarders can be added, not removed

L-6 maxTotalSupply can be updated to < totalSupply()

L-7 Unpublishing may orphan data

Q-1 Low Test Coverage

Q-2 Missing Events

Q-3 Inconsistent datatype for platformFeeBps

Q-4 Unused import

Q-5 Inaccurate getClaimTimestamp() return value

I-1 setClaimConditions() will accept phases that cannot become active

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the client

should give to fixing the issue. We assign severity according to the table of guidelines

below:

Severity Description

(C-x)
Critical

We recommend the client must fix the issue, no matter what,
because not fixing would mean significant funds/assets WILL
be lost.

(H-x)
High

We recommend the client must address the issue, no matter
what, because not fixing would be very bad, or some
funds/assets will be lost, or the code’s behavior is against the
provided spec.

(M-x)
Medium

We recommend the client to seriously consider fixing the
issue, as the implications of not fixing the issue are severe
enough to impact the project significantly, albiet not in an
existential manner.

(L-x)
Low

The risk is small, unlikely, or may not relevant to the project in
a meaningful way.

Whether or not the project wants to develop a fix is up to the
goals and needs of the project.

(Q-x)
Code Quality

The issue identified does not pose any obvious risk, but fixing
could improve overall code quality, on-chain composability,
developer ergonomics, or even certain aspects of protocol
design.

(I-x)
Informational

Warnings and things to keep in mind when operating the
protocol. No immediate action required.

(G-x)
Gas

Optimizations

The presented optimization suggestion would save an amount
of gas significant enough, in our opinion, to be worth the
development cost of implementing it.

Issue Details

H-1 Reward selection exploits

TOPIC

On-Chain Randomness
STATUS

Fixed ✳
IMPACT

High
LIKELIHOOD

Medium

Three sub-issues are listed below. The main cause for the high severity category is sub-

issue #3 – namely, the current Forwarder.sol implementation. Consider updating the

implementation to disallow contract calls.

For the other problems with randomness, consider adding an optional flag that hooks into

Chainlink, for the bigger projects that want secure randomness.

1) A block miner can tweak block.timestamp to either get a good reward, or

skip if a good reward is not possible

The RNG logic has three parts:

msg.sender – always known

blockhash of n-1 – known once n-1 is mined

difficulty – derived in nth block

Specifically, difficulty is derived from block.timestamp , of which a block miner has

some influence. Here is the formula for block.difficulty (source):

Given the above, a miner can submit their own transaction, and tweak the timestamp for

either a better reward, or choose to skip the claim in search of a better reward next time.

💡

 In the upcoming merge, a block’s difficulty will be no longer needed, and thus be set

to 0 forever.

However, Solidity’s block.difficulty will remain functional, and will instead return a

random value (see the details of why here).

Although this new form of randomness is more secure than directly using difficulty or

blockhash, it should still not be relied on, since validators can still choose to skip opening

the pack and wait for a better reward.

If a pack gets good traction, validators (post-merge) or miners (pre-merge) will likely

attempt to extract value in this way.

2) Users can use the Flashbots to claim rare rewards

Flashbots bundle allows users to group on-chain transactions such that they execute in

an all-or-nothing manner. From Flashbot’s website:

Advanced users can use this to create a bundle with two transactions:

1. Claim reward from the pack

2. Call a contract to determine whether they got a rare reward, and revert if not

Due to the behavior of Flashbots bundles, if the second tx fails, then the first will fail too:

3) Anyone can bypass the tx.origin == msg.sender requirement via a

meta-tx

Thirdweb allows a third party to execute transactions on behalf of a user via meta

transactions. Packs.sol also implement this feature:

In a meta transaction, a user only needs to create a signature and submit it to a trusted

forwarder, having that forwarder execute the transaction in exchange for not directly

paying for its gas cost.

Because a forwarder is a contract, any account (EOA or contract) can execute that signed

tx on behalf of its user.

This exposes a vulnerability:

1. Attacker creates a signature with msg.sender as themselves, and calldata for

claiming that reward.

2. Attacker deploys an exploit contract and calls it with said signature.

3. Exploit contract calls the forwarder to execute the created signed transaction.

4. Exploit contract can then choose to revert or not, based on the reward received.T

Since this call is coming from a trusted forwarder, the msg.sender == tx.origin check is

skipped, and the require statement passes.

M-1 Lost ERC-20 pack tokens result in permanently locked assets

TOPIC

Asset Mobility
STATUS

Wont Do
IMPACT

Medium
LIKELIHOOD

Medium

In Pack.sol, when createPack is called, an ERC-20 token is minted for each pack to open.

However, if any one of these tokens are lost (e.g. sent to an invalid address), then the

assets in the Pack contract are permanently locked.

The impact of this in practice depends on the value of the assets escrowed.

Consider setting expiration date on the pack, allowing the creator to recover any

unclaimed assets after that point.

RESPONSE BY THIRDWEB

M-3 Users can claim small amounts of tokens for free

TOPIC

Input Ranges
STATUS

Fixed
IMPACT

High
LIKELIHOOD

Low

In DropERC20.sol’s collectClaimPrice() :

uint256 totalPrice = (_quantityToClaim * _pricePerToken) / 1 ether;

Here, totalPrice can be calculated as zero when the product of _quantityToClaim and

_pricePerToken is smaller than 1 ether . For example:

_quantityToClaim = 1e+12 (0.000001 tokens)

_pricePerToken = 1e+5 ($0.10 USDC)

totalPrice = 1e+17 (0.1 ether) / 1 ether = 0

This allows a user to claim a small amount of tokens for free (assuming the currency is not

NATIVE_TOKEN).

Depending on the perceived value of the dropping ERC-20, an attacker may be motivated

to claim this way multiple times in a loop.

Consider requiring totalPrice > 0 when _pricePerToken is greater than zero.

M-4 Publishing is potentially too trusted

TOPIC

Turst Model
STATUS

Acknowledged
IMPACT

Medium
LIKELIHOOD

High

In ContractPublisher.sol, anyone can claim to have published any contract. While this

allows a user or contract to take a trusted publisher address and see what contracts they

claimed to have published, they still need to trust the claims of the publisher.

Additionally, a single contract address can be “claimed” by multiple publishers

Consider a design where a contract must approve, in some way, that a publisher has

indeed published it, so that ContractPublisher’s on-chain data is more reliable and

trustless.

RESPONSE BY THIRDWEB

L-1 Pack opening vulnerable to DoS

TOPIC

3rd Party Behavior
STATUS

Wont Do
IMPACT

Medium
LIKELIHOOD

Low

When a user calls openPack() , the Pack contract sends them one or many assets,

depending on the configuration of the pack. However, if one asset transfer fails, then the

entire transaction fails, potentially preventing pack opening altogether.

Example case: If a pack contained USDC, and the Pack contract is added to the USDC

blacklist, then every bundle containing USDC will revert on attempts to open.

Based on the ASSET_ROLE code, thirdweb plans to use an asset allow list at some point.

Consider using it on launch, to avoid an attacker creating a valuable bundle of assets

mixed with their own malicious asset, in attempt to scam others.

Another option to consider is isolating each _transferToken in a try-catch that emits an

Event on throw. This will allow for some record keeping around bad txes. It would also

need some sort of collecting from open pack retry feature.

RESPONSE BY THIRDWEB

L-2 Fee-on-transfer ERC-20 incompatibility

TOPIC

3rd Party Behavior
STATUS

Wont Do
IMPACT

Medium
LIKELIHOOD

Low

When a user calls createPack() , the Pack contract transfers assets to itself for escrow.

However, if one of these assets is a fee-on-transfer ERC-20 token, then the contract will

end up with insufficient assets necessary to support opening all packs.

As mentioned in L-1, thirdweb has an allow list ready to use. Consider using it on launch to

avoid this issue, or document that these tokens are not supported, or update Pack.sol to

perform balance differences by track asset balances on-chain.

RESPONSE BY THIRDWEB

L-3 supportsInterface() may prevent ERC721 tokens from transferring
to Pack.sol

TOPIC

Standards Compliance
STATUS

Fixed
IMPACT

Medium
LIKELIHOOD

Low

ERC721 contracts that query for ERC721Receiver interface support during transfers will fail

to transfer NFTs to Pack.sol, making these NFTs impossible to include in packs.

Note that standard ERC721 implementations (e.g. openzeppelin, solmate contract

templates) do not perform this check; and rely only on calling onERC721Received() post-

transfer. This gives this issue a low likelihood.

Consider updating supportsInterface() to return true for IERC721Receiver .

L-4 No recovery for accidental transfers

TOPIC

Mistake Recovery
STATUS

Wont Do
IMPACT

Low
LIKELIHOOD

Medium

Unfortunately it’s common to see accidental transfers of assets to a protocol’s smart

contract. If one sends ERC-20, ERC-721, or ERC-1155 tokens to the Pack contract, there is

no way to recover them.

Consider a state variable that is set before/after a call to createBundle() (similar to

nonReentrant), so Pack can reject incoming transfers where possible.

RESPONSE BY THIRDWEB

block_diff = parent_diff + parent_diff // 2048 * max(1 - (block_timestamp - parent_timestamp) // 10, -99) + int(2**((block.number // 100000) - 2))

require(isTrustedForwarder(msg.sender) || _msgSender() == tx.origin, "opener cannot be smart contract");

Searchers use Flashbots to submit bundles to block builders for inclusion in blocks.
Bundles are one or more transactions that are grouped together and executed in the
order they are provided. In addition to the searcher's transaction(s) a bundle can also
potentially contain other users' pending transactions from the mempool, and
bundles can target specific blocks for inclusion as well.

Unlike broadcasting a transaction which lands on-chain even if the transaction fails,
troubleshooting Flashbots bundles is considerably more challenging, since any of the
following circumstances will prevent your bundle from landing on chain:

Transaction failure (ANY within the bundle)

Incentives (gas price + coinbase transfers) not high enough to offset value of block
space

Competitors paying more for same opportunity

Bundle received too late to appear in target block

A validator for target slot not running mev-boost

In case of unclaimed rewards, either the pack creator will have sold the packs, or will
have it in their account to open it themselves. So, we'd rather put onus on the pack
owner to redeem it/transfer to correct addresses.

So, perhaps we'll keep this feature for a later release.

Not fixing (for now).

The issue pointed out requires a design change in the ContractPublisher contract
that must be coordinated throughout the thirdweb Release product.

Contract owner will be the end users, and they can toggle ASSET_ROLE as required.
Pros & cons will be described in design doc.

Contract owner will be the end users, and they can toggle ASSET_ROLE as required.
Pros & cons will be described in design doc.

Not clear how ERC20 accidental transfers would be rejected.

L-5 Trusted forwarders can be added, not removed

TOPIC

Protocol Longevity
STATUS

Acknowledged
IMPACT

High
LIKELIHOOD

Low

Thirdweb ERC2771Context implementation receives an array of trustedForwarder values

on initialization. However, there is no way to remove a trusted forwarder.

Consider adding a function to remove a trusted forwarder, or to set the full list of

forwarders, to handle cases where forwarders get lost, expired, or compromised.

RESPONSE BY THIRDWEB

L-6 maxTotalSupply can be updated to < totalSupply()

TOPIC

Input Ranges
STATUS

Wont Do
IMPACT

Low
LIKELIHOOD

Medium

In DropERC20.sol, setMaxTotalSupply() allows maxTotalSupply to be set to any

number. If the value is set to < totalSupply() all present and future claims will all fail,

and a potentially misleading event will be emitted (MaxTotalSupplyUpdated()),

potentially causing unnecessary confusion for users. Consider updating

setMaxTotalSupply() to require a value >= totalSupply() .

Note that if the intent is to halt minting immediately, setting maxTotalSupply to present

totalSupply() may suffer from race conditions if additional claims are processed ahead

of setMaxTotalSupply() . In this case, consider calling setClaimConditions() with an

empty _phases array instead. The latter approach will not revert if additional claims

precede its execution.

RESPONSE BY THIRDWEB

L-7 Unpublishing may orphan data

TOPIC

Data Model
STATUS

Acknowledged
IMPACT

Low
LIKELIHOOD

Low

The publishContract() function adds an entry into

compilerMetadataUriToPublishedMetadataUris which is not accounted for during

unpublishContract() .

This may leave orphan compilerMetadataUri data, causing it to refer to non-existent

publishMetadataUri data. Moreover, getPublishedUriFromCompilerUri() will return

publishMetadataUris for contracts that are unpublished.

RESPONSE BY THIRDWEB

Q-1 Low Test Coverage

TOPIC

Testing
STATUS

Acknowledged
QUALITY IMPACT

High

DropERC20.sol and ContractPublisher.sol have very light testing. Consider adding more to

more confidently affirm the behavior of the contracts.

Q-2 Missing Events

TOPIC

Events
STATUS

Fixed
QUALITY IMPACT

Low

DropERC20.sol’s setContractUri() does not emit an event.

Pack.sol’s setPublisherProfileUri() does not emit an event.

Consider adding an event for these changes.

Q-3 Inconsistent datatype for platformFeeBps

TOPIC

Data Model
STATUS

Acknowledged
QUALITY IMPACT

Low

The datatype applied to this value varies throughout the contract between uint256 ,

uint128 , uint64 and uint16 . Consider normalizing to the datatype applied to its

storage variable definition of uint128 .

RESPONSE BY THIRDWEB

Q-4 Unused import

TOPIC

Extra Code
STATUS

Fixed
QUALITY IMPACT

Low

In DropERC20.sol, the import of ERC20PausableUpgradeable.sol is not used.

Q-5 Inaccurate getClaimTimestamp() return value

TOPIC

Data Consistency
STATUS

Fixed
QUALITY IMPACT

Medium

In DropERC20.sol’s getClaimTimestamp() , when lastClaimTimestamp is zero,

nextValidClaimTimestamp should arguably be 0 to indicate that no delay is required,

since no prior purchase has occurred.

If this were to be implemented, a minor gas-savings opportunity can be implemented

along with it, as the nextValidClaimTimestamp could be skipped, and line 376 could be

simplified to:

require(block.timestamp >= nextValidClaimTimestamp, "cannot claim yet.");

I-1 setClaimConditions() will accept phases that cannot become active

TOPIC

Data Consistency
IMPACT

Informational ✳

setClaimConditions() will update claimCondition without comparing individual

_phases[i].startTimestamp values with respect to block.timestamp . As a result, it is

possible to supply a set of claim conditions which will never execute.

For example, consider calling setClaimCondition with 4 entries in _phases , with

startTimestamp values of: 50 , 75 , 100 , 125 . If executed when block.timestamp =

100 , the first two phases will never occur.

This may impact an owner’s intended phases, or mask accidental errors in phase

formulation.

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect

to the services or deliverables provided in this report, and Macro specifically disclaims all

implied warranties of merchantability, fitness for a particular purpose, noninfringement

and those arising from a course of dealing, usage or trade with respect thereto, and all

such warranties are hereby excluded to the fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand by any other party. In no event will Macro be liable

for consequential, incidental, special, indirect, or exemplary damages arising out of this

agreement or any work statement, however caused and (to the fullest extent permitted by

law) under any theory of liability (including negligence), even if Macro has been advised of

the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by

the Emergent team and only the source code Macro notes as being within the scope of

Macro’s review within this report. This report does not include an audit of the deployment

scripts used to deploy the Solidity contracts in the repository corresponding to this audit.

Specifically, for the avoidance of doubt, this report does not constitute investment advice,

is not intended to be relied upon as investment advice, is not an endorsement of this

project or team, and it is not a guarantee as to the absolute security of the project. In this

report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such websites’ owners. You

agree that Macro is not responsible for the content or operation of such websites, and

that Macro shall have no liability to your or any other person or entity for the use of third

party websites. Macro assumes no responsibility for the use of third party software and

shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Not clear how ERC20 accidental transfers would be rejected.

Any function to recover such tokens might affect existing functionality and token
balances in the packs.

Not fixing (for now).

Today, a thirdweb pre-built smart contract deployed by users on the dashboard or via
SDKs use the same set of trusted forwarders deployed by thirdweb, or external
providers like Biconomy.

The issue pointed out requires a design change across all of thirdweb’s smart
contracts; it’s fix will be coordinated across the thirdweb products.

The purpose here was to achieve pausing of claims by setting maxTotalSupply as less
than totalSupply().

The absence of checks is intended to transfer responsibility to contract admin.

Not fixing (for now).

The issue pointed out requires a design change in the ContractPublisher contract
that must be coordinated throughout the thirdweb Release product.

Not fixing (yet).

This fix will be coordinated across the relevant thirdweb smart contracts.

